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Quantum mechanical potentials related to the prime numbers and Riemann zeros
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Prime numbers are the building blocks of our arithmetic; however, their distribution still poses fundamental
questions. Riemann showed that the distribution of primes could be given explicitly if one knew the distribu-
tion of the nontrivial zeros of the Riemann {(s) function. According to the Hilbert-Pélya conjecture, there
exists a Hermitian operator of which the eigenvalues coincide with the real parts of the nontrivial zeros of {(s).
This idea has encouraged physicists to examine the properties of such possible operators, and they have found
interesting connections between the distribution of zeros and the distribution of energy eigenvalues of quantum
systems. We apply the Marchenko approach to construct potentials with energy eigenvalues equal to the prime
numbers and to the zeros of the {(s) function. We demonstrate the multifractal nature of these potentials by
measuring the Rényi dimension of their graphs. Our results offer hope for further analytical progress.
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I. PRIMES, ZEROS, AND QUANTA

The prime numbers are the building blocks for the posi-
tive integers, since the fundamental theorem of arithmetic
states that every positive integer can be written as a product
of primes, and this product is unique up to a rearrangement
of the factors. Additionally, not only does the product of
prime numbers have this remarkable property, but also their
sum. Only a decade ago Ramaré proved [1] that any positive
integer can be written as a sum of no more than six prime
numbers, but the Goldbach conjecture [2], that every number
is expressible as a sum of two prime numbers, remains
unproven.

Based on empirical evidence, many mathematicians con-
jectured that the prime counting function, (x)
=[{p|p is prime and p<x}|, asymptotically behaves as the
logarithmic integral Li(x). Hadamard [3] and de la Vallée-
Poussin [4] independently gave a rigorous proof for this
statement. Riemann derived the following exact formula [5]:

7(x) = lim<R(x) Y R(xp)>, (1)
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where R(x) is the so-called Riemann function defined as
R(x)=="_ m(m)Li(x"™)/m, and wu(m) denotes the Mobius
function. The sum in (1) is extended over all nontrivial zeros
p of the Riemann {(s) function, counted with their multiplici-
ties. The latter function {(s) is defined by the infinite series
{(s)==_n~* for s>1, and, otherwise, by its analytic con-
tinuation over the complex s plane.

Exploring the locations of the zeros of {(s), Riemann
made his famous conjecture: all the nontrivial zeros lie on
the s=%+it (¢ is real) critical line. Proof or disproof of the
Riemann hypothesis remains the most tantalizing challenge
in number theory since Hilbert nominated it in 1900 [6] as
the eighth problem on his famous list of compelling prob-
lems in mathematics [7].
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The connection between the Riemann hypothesis and
physics seems to date back to the early years of quantum
mechanics. According to the Hilbert-Pélya conjecture, the
zeros of {(s) can be the spectrum of an operator O:%I
+iH, where 'H is self-adjoint. This operator H might have a
physical interpretation as a Hamiltonian of a physical system
and, therefore, the key to the proof of the Riemann hypoth-
esis may have been coded in physics.

The analogy between the properties of {(s) and the energy
eigenvalues of a quantum mechanical system provide us
some information about the form of a possible operator H
[8]. One of these similarities, the comparison of the number
of {(s) zeros and the number of energy eigenvalues below a
threshold, suggests that the physical system is quasi-one-
dimensional. This link is further strengthened by checking
different statistics of the zeros, such as the nearest-neighbor
spacings, the n-correlations between the zeros, etc. Mont-
gomery showed that these distributions are all in good agree-
ment with the Gaussian unitary ensemble of random matrix
theory [9].

In this work we utilize an inverse scattering formalism
and construct potentials of which the energy eigenvalues are
the zeros of the Riemann {(s) function. We also consider the
problem when the eigenvalues are taken to be the prime
numbers themselves. In Sec. II we introduce our numerical
method and give evidence that it is capable of generating
potentials from sets of discrete energy eigenvalues, such as a
finite set of { zeros or a finite set of prime numbers. We
calculate the Rényi dimension [10] for these potentials. The
results anticipate that these potentials have multifractal na-
ture. In Sec. III we attempt to further clarify why previous
studies presented contradictory results for the fractal dimen-
sion.

II. INVERSE SCATTERING FORMALISM

Provided the Hilbert-Pélya conjecture is true, the natural
and plausible approach to finding operator H would be to
approximate it from a finite number of eigenvalues. We will
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follow this path, assuming the existence of a local potential )V
whose spectrum is related to the zeros of the Riemann {(s)
function or, later, to the prime numbers.

The Marchenko approach aims to reconstruct a symmetric
potential using the characteristics of both the bound states
(energy eigenvalues and normalization constants) and the
scattering states (reflection coefficient at all energies). The
question of the existence and uniqueness of any solution ob-
tained from the inversion procedures is delicate, although if
one assumes a one-dimensional, symmetric potential the
complete set of eigenvalues uniquely determines the poten-
tial [11]. Different, but mathematically equivalent, methods
exist [12] for reconstructing the scattering potential in a one-
dimensional quantum mechanical problem.

For a given set of energy eigenvalues and reflection coef-
ficient the quantum potential can be calculated from

V(x)=- Zdii K(x,x")| o (2)

where the order of operations is important. One should lo-
calize x’ first and then perform the differentiation. The func-
tion K(x,x") is the solution of the Maréhenko integral equa-
tion (x’ >x)

K(x,x’)+K0(x+x’)+fwK(x,s)Ko(s+x’)ds=0, (3)

and the kernel K(z) is determined by the spectral parameters

- N

R(k)e™dz + X, c, e . (4)

n=1

1
Ko(Z) = ;T

The input data are the reflection coefficient R(k) at energy
E=#/%*/2m, and the normalization constant ¢, of the nth
bound state related to the discrete energy eigenvalue
E,=—h>k2/2m.

In general, scattering states contribute to the kernel, and
therefore a family of potentials can be associated with a
given set of energy eigenvalues. However, according to our
physical picture there are no scattering states in our case. The
potential is theoretically infinitely deep, because the set of
prime numbers and the set of {(s) zeros are infinite sets with
no upper bound. Henceforward we take R(k)=0.

In the case of the reflectionless potential, the scattering
states in Eq. (4) do not contribute to the kernel and, there-
fore, lead to a separable and exactly solvable integral equa-
tion. The potential can then be obtained from the formula

[13]

2
V(x)=- 2d—2 In[det(I+ C)], (5a)
dx

where I denotes the identity matrix, and

Cmcn —_
C,., = —" e Kt (5b)

K, + K,
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2 N

Kln + Kﬂ

(5¢)

m=1 | Km = Ky

m#n

Choosing a set of eigenvalues {x,}, one may calculate the
corresponding normalization constants {c,} and matrix C
from Egs. (5b) and (5c). Substituting this matrix into (5a),
the desired potential can be calculated.

We note here briefly that, by using the matrix identity
In[det(M)]=Tr[In(M)] and the power series expansion of
In(1+x), one can symbolically derive the following expres-
sion for the potential:

*© r 2
V(x)=22( D Tr<d—20’), (6)
- dx
where Tr(M) denotes the trace of matrix M.

The formulas (5a)—(5¢) above form the basis of our cal-
culations. Although these expressions may seem simple, the
accurate numerical evaluation of the determinant can prove
challenging, particularly as the number of eigenvalues is in-
creased.

The inversion technique in its present form is numerically
not convenient for more than about 500 eigenvalues, for two
reasons: first, the matrices involved are dense, and, second,
the numerical precision required is demanding, since for me-
dium values of x one has to calculate the exponential func-
tions in (5b) very accurately to have precise cancellation.
The transformation of the formulas (5a)—(5¢) into a numeri-
cally more tractable form is under investigation.

For this reason, for large sets of eigenvalues, we used the
dressing transformation [14] to calculate the potential. We
have checked numerically, up to 300 energy eigenvalues, that
Marchenko’s inversion method and the dressing transforma-
tion give identical results within numerical accuracy. The
strength of our approach is in the explicit formulas for the
potential construction. Using the dressing transformation one
has to recursively solve ordinary differential equations, since
the potential is built up by incorporating the energy eigen-
values one by one, so in every step the solution of the pre-
vious step is used. Therefore, the applicability of this method
to gain general and analytical results is limited. In contrast,
in our method all quantities are expressed in terms of the
input parameters, viz., the set of energy eigenvalues, offering
some hope of analytic progress.

A. Reconstruction of well-known potentials

To illustrate the method, we reconstruct well-known po-
tentials from their spectra, using the triangular and harmonic
oscillator potentials. Later the extended Numerov method
[15] is used to calculate the energy eigenvalues of the inver-
sion potentials. This also serves to check the validity of the
potentials obtained using the Marchenko approach.

We build up the potentials using a finite number of eigen-
values, starting with one, then two, five, and finally 100 ei-
genvalues from the bottom of the known spectrum. As one
may expect, incorporation of more and more eigenvalues
into the method results in the inversion potential becoming
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FIG. 1. Reference potential Vj(x)=x (dashed line) and inversion
potentials (solid lines) V(x) using (a) one, (b) two, and (c) five
energy eigenvalues indicated with horizontal dashed lines. The
lower figure depicts the reference and inversion potentials derived
using the first 50 energy eigenvalues; the inset illustrates the differ-
ence between Vj(x) and V(x).

more and more accurate and reproducing the spectrum faith-
fully. This tendency is clearly captured in Fig. 1 for the tri-
angular potential and in Fig. 2 for the harmonic potential.
Furthermore, the inversion potentials reach their asymptotic
values exponentially [13] and this asymptote lies between
the last energy eigenvalue used for the inversion and the next
eigenvalue. Although the discrepancy between the exact and
inversion potentials becomes larger toward the edge of the
inversion potential, the energy eigenvalues are still correctly
reproduced (see Table I) with tolerable errors.

B. Inversion potential for prime numbers

Using semiclassical arguments, one may show that for a
one-dimensional potential the energy eigenvalues cannot in-
crease more rapidly than quadratically, i.e., €,~n>. Intu-
itively this may be seen by noting that in the case of the
triangular attractive potential €, scales as n>, while for the
harmonic oscillator €, varies as n, and, as a limiting case, for
the infinite-box potential, €, varies as n’. A corollary of the
Hadamard-Poussin theorem [16] is that the nth prime num-
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FIG. 2. Reference potential V(x)=x> (dashed line) and inver-
sion potential V(x) (solid line) using (a) one, (b) two, and (b) five
energy eigenvalues which are indicated with horizontal dashed
lines. In the lower panel, the same quantities are presented with the
first 100 energy eigenvalues utilized. The inset depicts V(x)
-V(x).

ber is approximately 7 In(n), which is clearly less than n’.
We cannot, therefore, rule out the existence of a quantum
mechanical potential which has prime numbers as energy
eigenvalues.

We now turn to the construction of a semiclassical poten-
tial for which the first n energy eigenvalues coincide with the
first n prime numbers. There is no theoretical limit on the
number of incorporated prime numbers, although numeri-
cally the calculation becomes quite cumbersome.

Using the Wentzel-Kramers-Brillouin semiclassical quan-
tization formula [17] and the leading terms of the prime
number counting function, 7(E) = R(E), one may derive [18]
the following implicit equation for a potential of which the
eigenvalues are approximately the prime numbers (Ey= 1):

ﬂ(m)J (1 m)/m
*V) = 121 o In(E)VV - EdE’ @

where E denotes the reference energy level. Due to the den-
sity of prime numbers, p(E)=In(E), this reference energy
cannot be less than 1. Even though the integral, for general
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TABLE 1. Comparison of the known energy eigenvalues ¢, for
the harmonic and triangular reference potentials with the energy
eigenvalues €, of the appropriate inversion potentials calculated for
the first 100 eigenvalues. The table shows the first and the last five
eigenvalues.

Harmonic potential Triangular potential

n €1 €, €1 €,
1 1 1.001923 1.018793 1.015439

2 3 3.000020 2.338107 2.338100

3 5 5.000944 3.248198 3.247152

4 7 7.000031 4.087949 4.087942

5 9 9.000696 4.820099 4.819397
96 191 190.997520 36.995074 36.995066
97 193 192.996641 37.252699 37.252615
98 195 194.996021 37.509795 37.509785
99 197 197.015433 37.765659 37.765580
100 199 198.984293 38.021009 38.021020

m, cannot be expressed using elementary functions, one may
bound the integral from below and from above such that
(x>1)

x2 In?(x) < V(x) — Ey < x* In’[x In(x)]. (8)

In Fig. 3 we plot the inversion potential calculated from
the first 200 prime numbers and the associated semiclassical
potential from Eq. (7). It is apparent that the inversion po-
tential oscillates around the semiclassical potential except
close to the edge of the potential. Similarly, one may solve
the Schrodinger equation with the semiclassical potential and
with the inversion potential obtained above, comparing how
well they reconstruct the original set of eigenvalues. Table II
comprises a selection from the original set of eigenvalues
(€.,), labeled by n, and the energy eigenvalues of the semi-
classical (e ,) and inversion potential (e,) with the same
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FIG. 3. Semiclassical potential (dashed line) Vj(x) and inversion
potential (solid line) V(x), derived using Mar¢henko’s method with
the first 200 prime numbers. Inset: Difference of V(x) and V(x).
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quantum number. This also served as a numerical check of
our method. The semiclassical energy eigenvalues capture
the trend, but—as expected—those derived from the inver-
sion potentials are much better approximations to the exact
eigenvalues. One may notice that the agreement between ¢,
and e, is consistently much better for even values of n. The
same tendency can also be seen in Table I for the triangular
and harmonic oscillator potentials, although on an order of
magnitude smaller scale. The underlying reason for this ef-
fect is the subject of ongoing investigation.

C. Inversion potential for {(s) zeros

Similarly to the semiclassical approximation derived for
the prime numbers, one may calculate a potential corre-
sponding to the Riemann {(s) zeros using the fact that the
number of zeros [16]

6= (e 20D

E+ % +0(In(E)). (9)
Calculation of the average density of the {(s) zeros from the
expression above restricts the choice of the otherwise arbi-
trary reference energy level to E,= 2. Inserting the density
into the Wentzel-Kramers-Brillouin semiclassical quantiza-
tion formula, we obtain (see 2.727.5 in [19])

I, | —

1| —— [ E — [(VWV+\V-E
x(V)=— \'V—Eoln< 02)+\'v1n<,_—,_°> ,

T 21e VW—-\V-E,

(10)

which is identical to that given by Wu and Sprung [20]. The
structure of the semiclassical potential close to the origin
depends on the choice of the reference energy level. If E,
>21 then V(x)—E,~x?, but in the case of E,=2 the po-
tential grows as V(x)—E,~x*3. As |x| approaches infinity
the potential becomes independent of E, and expression (10)
can be inverted to obtain the asymptotic

2 -2
w2

where W(z) denotes the Lambert W function.

Applying the formulas (5a)—(5¢) we calculated a number
of potentials supporting the first n zeros of the {(s) as energy
eigenvalues, utilizing a tabulated form of the low-lying zeros
[21]. As an example, we have plotted the potential for N
=200 in Fig. 4 and in Table II one can compare how well the
energy eigenvalues of the inversion potential coincide with
the original eigenvalues, i.e., the zeros of the Riemann {(s)
function. In this case the agreement is even better than it was
for the prime numbers. This can be explained by the much
slower increase of the potential than that for prime numbers,
as x approaches infinity. Similar effects are seen for the two
pedagogical examples in Table I. The energy eigenvalues for
the triangular potential are, at least, an order of magnitude
more accurate than those for the harmonic potential.

III. COMPARISON WITH EARLIER RESULTS

Both variational and dressing-transformation techniques
have already been applied to construct quantum mechanical
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TABLE II. The energy eigenvalues of the potentials derived for the prime numbers and the zeros of the
{(s) function. For both the primes and zeros of the Riemann {(s) function, the first column comprises the
exact eigenvalues, € ,, the second one contains €, for the semi-classical potential, and the last incorporates
the energy eigenvalues ¢, of the appropriate inversion potential.

Prime numbers

Riemann {(s) zeros

n EO,n 6sc,n €, 60,n Esc,n €,
1 2 0.6895 1.6387 14.1347 13.4690 13.0302
2 3 2.5316 3.0005 21.0220 23.2274 21.0208
3 5 5.0674 4.7052 25.0109 29.8790 24.7026
4 7 7.9717 7.0006 30.4249 36.0644 30.4234
5 11 11.1201 10.702 32.9351 41.4187 32.8091
96 503 513.8440 503.0008 229.3374 284.3914 229.3354
97 509 520.3027 508.7052 231.2502 287.1530 231.2259
98 521 526.7728 520.9981 231.9872 289.9657 231.9865
99 523 533.2544 522.9371 233.6934 292.8088 233.6322
100 541 539.7472 540.9843 236.5242 295.7020 236.5215

potentials for which the energy eigenvalues are either the
zeros of the Riemann {(s) function [14,20,22], or the prime
numbers [22]. The common feature of these methods is that
the potential is built up in recursion by incorporating more
and more eigenvalues into the spectrum.

Previous works [20,22] estimated the box-counting di-
mension of the potentials belonging to the prime numbers to
be 1.8, and for the Riemann /(s) zeros to be 1.5, where the
number of eigenvalues used ranged from 100 to 32 000. Our
measurements broadly support these values (see D, in Fig.
5).

In order to reproduce these findings we treat the graph of
the potential as a signal. To measure the fractal dimension we
detrend the signal, i.e., subtract the actual inversion potential
from the semiclassical potential, &(x)=V(x)-V,.(x). More-
over, we limit ourselves to the spatial range of [0,10] to
eliminate any boundary effect arising from the fact that both
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Inversion potential with N=200 ——
Semiclassjcal approximation -

0 I I
0 5 10 15 20

Distance, x

FIG. 4. Semiclassical potential (dashed line) V(x) and inversion
potential (solid line) V(x), derived from the inverse scattering
method using the first 200 energy eigenvalues. Inset: Difference of
Vo(x) and V(x).
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FIG. 5. Rényi dimension D, shown for the potentials belonging
to (a) the prime numbers and (b) the Riemann {(s) zeros. Insets on
the left show D, for the marginal distribution (see text) while those
on the right depict the detrended data. Here, in the dressing trans-
formation, we used the first 10° eigenvalues and spatial step size
h=107% for both the prime numbers and the zeros of {(s).
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Marchenko’s method and the dressing transformation pro-
duce a potential with a constant asymptotic value for large
spatial coordinates.

We have measured the Rényi dimension of the potentials

[10,23], defined as
N
ln<2 pit )
1 i=1

D (X)= i s 12
«(X) a-1 ;rg In(e€) (12)

where p; is the probability that the discrete random variable
X falls into a box centered at x; with side e. This probability
can be approximated using the relative frequencies obtained
by dividing the embedding two-dimensional (x, V) space into
a finite number of bins and counted how many times the
potential takes its value in the given box. In contrast to the
general box-counting method, which treats every box
equally, regardless of how many points of the fractal a given
box contains, if @>0 in (12) then boxes with higher relative
frequencies will dominate the summand, therefore determin-
ing D,(X). On the other hand, if @<<0 then the formula
weighs with less dense boxes more and measures their scal-
ing properties. As a special case, a=0 associates equal
weights with every box, and therefore D, should reproduce
the box-counting dimension. It can also be shown [10] that
for «— 1 the numerator including the prefactor converges to
the Shannon entropy, defined to be —=,p; In(p;). Concluding,
by calculating the generalized Rényi dimension one can
“scan” the fractal by its “density,” and measure its heteroge-
neity. If D, varies with « then the fractal is a multifractal,
since its subsets scale differently.

One may derive two statistics for & based on (12): (a)
using a two-dimensional grid and approximating the two-
dimensional conditional probability distribution with the
relative frequencies of the individual boxes, or (b) calculat-
ing the generalized dimension for the marginal probability
distribution of &. In Fig. 5 both sets of statistics are demon-
strated, showing the generalized dimension for the two-
dimensional probability distribution and the insets depicting
D, for the marginal distribution. The box-counting dimen-
sions D, are also indicated on the graphs. Although both
curves in the main figures have an overall S shape, their
structures are different. In the case of the potential generated
from the prime numbers, both the positive and negative «
branches of the curve show a monotonic decrease toward the
right. However, for the potential designed from the zeros of
the Riemann {(s) function, the negative a branch of the
curve remains nearly constant.

These results suggest that the potentials calculated for the
prime numbers and for the zeros of the Riemann {(s) func-
tion are indeed multifractals [24]. The steep middle part of
the curves also explains why earlier studies [14,20,22,25]
differed in the box dimension. The number of incorporated
energy eigenvalues strongly influences the conditional prob-
ability associated with one box and eventually shifts D,.

Finally, we mention another conjectured property of the
quantum system supposed to possess the zeros of the Rie-
mann {(s) function as energy eigenvalues, namely, that H

PHYSICAL REVIEW E 78, 056215 (2008)

may violate time-reversal symmetry.

Similarly to the prime counting function 7(x), one may
define a function N(z) that counts the zeros of the Riemann
{(s) function, i.e., a function jumping by unity whenever ¢
passes over one of the zeros, 1,. It has been proved [16] that
the function A can be decomposed into a smooth and a fluc-
tuating part, N(1)=N(1) + N,.(1), where N(¢) has been given
in (9) explicitly. The fluctuating term has a remarkably simi-
lar structure to Gutzwiller’s trace formula [26] giving the
density of states of a quantum system. The comparison of the
two formulas led to the hypothesis [27] that a quantum sys-
tem with the zeros of the Riemann {(s) function as energy
eigenvalues does not possess time-reversal symmetry. The
approach presented in this paper creates a symmetric, one-
dimensional, although multifractal, potential V(x), for which
the corresponding energy eigenvalues coincide with the first
n nontrivial zeros of the Riemann /(s) function. The reflec-
tion symmetry of the potential, V(x)=V(-x), guarantees
time-reversal symmetry of the Hamiltonian, H=p?/2m
+V(x). This result, therefore, allows us to assume the exis-
tence of a quantum system having the { zeros as energy
eigenvalues and obeying time-reversal symmetry simulta-
neously.

IV. CONCLUSION

In the present paper we used Marc¢henko’s method, one of
the inverse scattering methods, to construct one-dimensional,
symmetric quantum potentials, the energy eigenvalues of
which coincide with either the prime numbers or the zeros of
the Riemann {(s) function. We have demonstrated the accu-
racy and usefulness of this method on two pedagogical ex-
amples, the triangular and harmonic potentials. For both
cases we showed the reconstructed potentials and calculated
the energy eigenvalues, which agreed with the predescribed
values very well. Later, we applied the same technique and
numerically calculated potentials for the prime numbers and
zeros of {(s). We found that the outcome of the Marchenko
method is identical to that of the dressing transform used
previously. At the present stage, the latter method is numeri-
cally preferable to Marc¢henko’s method. Using the dressing
transform, we created potentials, to high accuracy, from the
first 100 000 prime numbers and also for the same number of
zeros of the Riemann {(s) function. Looking at the graphs of
these potentials as signals, one can analyze their statistical
properties. After detrending these signals we calculated the
Rényi dimension, which is a generalized fractal dimension.
Our results suggest that inversion potentials are multifractals
for both the prime numbers and the zeros of {(s). The spe-
cific values of the generalized dimension for the prime num-
bers Dy=1.808, and for the {(s) zeros, Dy=1.458, agree well
with [22].

Even though Marchenko’s method is not yet able to com-
pete with the dressing transform in the number of eigenval-
ues incorporated into the potential, it gives explicit formulas
for how one can build up such potentials without recursion.
Looking at formula (5a) one may see that the determinant of
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the matrix I+C is a polynomial of the entries, i.e., of expo-
nential functions. Taking the natural logarithm and differen-
tiating twice with respect to the spatial variable will not
change the fact that the potential is a rational function of a
finite number of exponentials. This fact is more apparent in
formula (6). This gives us the hope of being able to explore
analytically the properties of a quantum system which pos-
sess the zeros of the Riemann {(s) function as energy eigen-
values.

Simplification  of
investigation.

formulas  (5a)—(5¢) is under

PHYSICAL REVIEW E 78, 056215 (2008)

ACKNOWLEDGMENTS

D.S. is grateful to Dr. Dennis McCaughan for the discus-
sion about the convergence of a sequence containing the
Mbobius function. This work was financially supported by the
New Zealand Foundation for Research Science and Technol-
ogy under Contract No. NERF-UOOX0703: Quantum Tech-
nologies. B.P.v.Z. acknowledges financial support from the
Natural Sciences and Engineering Research Council
(NSERC) of Canada.

[1] O. Ramaré, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 22, 645
(1995).

[2] C. Goldbach (unpublished).

[3] J. Hadamard, Bull. Soc. Math. France 24, 199 (1896).

[4] C. J. de la Vallée-Poussin, Ann. Soc. R. Sci. Med. Nat. Brux-
elles 20, 183 (1896).

[5] M. R. Schroeder, Number Theory in Science and Communica-
tion, Springer Series in Information Sciences Vol. 7 (Springer-
Verlag, Berlin, 1984).

[6] D. Hilbert, Bull. Am. Math. Soc. 8, 437 (1902).

[7] See http://www.claymath.org/millennium/
Riemann_Hypothesis

[8] H. C. Rosu, Mod. Phys. Lett. A 18, 1205 (2003).

[9] H. L. Montgomery, Proc. Symp. Pure Math. 24, 181 (1972).

[10] A. Rényi, in Proceedings of the Fourth Berkeley Symposium
on Mathematics (University of California Press, Berkeley,
1961), pp. 547-561.

[11] V. Barcilon, J. Math. Phys. 15, 429 (1974).

[12] K. Chadan and P. C. Sabatier, Inverse Problems in Quantum
Scattering Theory, Texts and Monographs
(Springer-Verlag, Berlin, 1977).

[13] I. Kay and H. E. Moses, J. Appl. Phys. 27, 1503 (1956).

in Physics

[14] A. Ramani, B. Grammaticos, and E. Caurier, Phys. Rev. E 51,
6323 (1995).

[15] V. Fack and G. V. Berghe, J. Phys. A 20, 4153 (1987).

[16] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function,
2nd ed. (Clarendon Press/Oxford University Press, New York,
1986).

[17] A. Galindo and P. Pascual, Quantum Mechanics II, Texts and
Monographs in Physics Vol. 2 (Springer-Verlag, Berlin, 1991).

[18] G. Mussardo, e-print arXiv:cond-mat/9712010.

[19] L. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, 6th ed. (Academic, New York, 2000).

[20] H. Wu and D. W. L. Sprung, Phys. Rev. E 48, 2595 (1993).

[21] A. Odlyzko, http://www.dtc.umn.edu/~odlyzko

[22] B. P. van Zyl and D. A. W. Hutchinson, Phys. Rev. E 67,
066211 (2003).

[23] A. Kruger, Comput. Phys. Commun. 98, 224 (1996).

[24] Multifractality, in a somewhat different context, is also dis-
cussed by M. Wolf, Physica A 160, 24 (1989).

[25] H. Wu, M. Vallieres, D. H. Feng, and D. W. L. Sprung, Phys.
Rev. A 42, 1027 (1990).

[26] M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971).

[27] M. V. Berry and J. P. Keating, SIAM Rev. 41, 236 (1999).

056215-7



